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Assessing Network Structure
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Exponential Random Graph Models (ERGMs)

Setting:

Network x composed of n nodes and M edges

Assume binary edges between nodes i , j : xi,j ∈ {0,1}

X : family of all graphs with n nodes and binary edges

PX : probability measure on X

Aim: Identify (and then estimate) the relational covariates that capture

network structure through PX

Matt Denny The GERGM June 24th, 2016 4 / 23



Exponential Random Graph Models (ERGMs)

The probability (likelihood) of observing network x :

PX (x ,θ) =
exp(θT h(x))

∑
z∈X

exp(θT h(z))
, x ∈ {0,1}M

h ∶ {0,1}M → Rp: Network covariates

θ ∈ Rp: unknown parameters (we have to estimate these!)
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Weighted Graphs

Setting:

Network y composed of n nodes and M edges

Edges are continuous valued between nodes i , j : yi,j ∈ (−∞,∞)

Y : family of all graphs with n nodes

PY : probability measure on Y

Examples:

Migration, Finance, Communication, Voting, Biological, Trade, etc.
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Generalized Exponential Random Graph Model

Probability measure on family of weighted graphs w/ n nodes, M edges

Model: Two Steps

1) Model joint structure of Y on restricted network X ∈ [0,1]M :

fX (x ,θ) =
exp (θT h(x))

∫[0,1]m exp (θT h(z))dz
, x ∈ [0,1]M

h ∶ [0,1]M → Rp: Network covariates (endogeneous or exogenous)

θ ∈ Rp: unknown structural parameters
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Generalized Exponential Random Graph Model

2) Transform onto space of continuous weights:

fY (y , θ,Λ) =
exp (θT h(T (y ,β)))

∫[0,1]m exp (βT h(z))dz
∏
ij

tij(y ,β), y ∈ RM

T ∶ RM → [0,1]m: parametric transformation function

Monotonically increasing

An appropriate choice: cumulative distribution functions

β ∈ Rq: unknown transformation parameters
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Features of the GERGM

Flexible model for any type of weighted network

Estimation via Markov Chain Monte-Carlo or Maximum

pseudo-likelihood

Simplifies to multivariate linear regression when h(x) = 0
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Model Specification: Weighted Network Statistics

Network Statistic Parameter Value

Reciprocity θR
⎛

⎝
∑

i<j
xijxji
⎞

⎠

αR

Cyclic Triads θCT
⎛

⎝
∑

i<j<k
(xijxjk xki + xik xkjxji)

⎞

⎠

αCT

In-Two-Stars θITS
⎛

⎝
∑

i
∑

j<k≠i
xjixki

⎞

⎠

αITS

Out-Two-Stars θOTS
⎛

⎝
∑

i
∑

j<k≠i
xijxik

⎞

⎠

αOTS

Edge Density θE
⎛

⎝
∑

i≠j
xij
⎞

⎠

αE

Transitive Triads θTT
⎛

⎝
∑

i<j<k
(xijxjk xik + xijxkjxki + xijxkjxik)+

∑

i<j<k
(xjixjk xki + xjixjk xik + xjixkjxki)

⎞

⎠

αTT
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Inference on the GERGM

Likelihood of GERGM is intractable; relies on MCMC

Gibbs (Desmarais, et al., 2012)

Major Issue: Restricts model specification by requiring first order

network statistics
∂2h(x)
∂x2

ij
= 0, i , j ∈ [n]

Metropolis-Hastings (Wilson, et al. 2015): Removes above restriction

on GERGM
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Metropolis-Hastings Sampling

Framework: Acceptance/Rejection algorithm for weighted edges w/

multivariate truncated normal proposal distribution.

Proposal: qσ(w ∣x) =
σ−1φ(w−x

σ )

Φ(1−x
σ ) −Φ(−x

σ )
, 0 ≤ w ≤ 1

Advantages:

Flexible model specification

Interaction effects

Exponential weighting of covariates

New available models can avoid likelihood degeneracy
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Comparison to Gibbs Sampling: U.S. Migration Data

Describes the inter-state migration in U.S. from 2006 to 2007.

Fit a GERGM with 5 network statistics, 11 demographic covariates
Matt Denny The GERGM June 24th, 2016 13 / 23



Equivalent Covariate Estimates
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Goodness of Fit

M-H and Gibbs have comparable (and good) performance
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Likelihood Degeneracy
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Case Study: In-Two-Stars Model

Model:

fX (x , θ, α) =
exp (θEhE(x) + θITShITS(x))

C(θE , θITS)
, x ∈ [0,1]m

Edge density: hE(x) = ∑i≠j xij/m

In-Two-Stars: hITS(x , α) = (∑i ∑j<k≠i xjixki)
α

Known to suffer from degeneracy issues in the binary case.

Matt Denny The GERGM June 24th, 2016 17 / 23



Exponential Down-Weighting
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Figure: Statistics from 1M simulated In-Two-Stars networks with various

values of α weighting.
Matt Denny The GERGM June 24th, 2016 18 / 23



Non-Degeneracy
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Figure: Histograms of simulated in two-stars and network density statistics for

different values of α at the point where the derivative of the density in θITS is

the steepest.
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Defeating Degeneracy

Causes:

Bimodal density distribution vs. poor initialization.

Solutions:

Estimate intercept via transformation.

Exponential down-weighting.

Weighted MPLE.

Adaptive grid search.
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GERGM Software in R

github.com/matthewjdenny/GERGM
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Thank you!

Funding: National Science Foundation

Grants: DGE-1144860, DMS-1105581, DMS- 1310002,

SES-1357622, SES-1357606, SES-1461493, and CISE-1320219

Materials:

Paper: http://ssrn.com/abstract=2795219

Github: github.com/matthewjdenny/GERGM

CRAN: GERGM
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GERGM - Metropolis Hastings Procedure

1 For i , j ∈ [n], generate proposal edge x̃(t)
i,j ∼ qσ(⋅∣x

(t)
i,j )

independently across edges.

2 Set

x(t+1)
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x̃(t) = (x̃(t)
i,j )i,j∈[n] w.p. ρ(x(t), x̃(t))

x(t) w.p. 1 − ρ(x(t), x̃(t))

where

ρ(x ,y) = min(
fX (y ∣θ)
fX (x ∣θ)

m
∏
i=1

qσ(xi ∣yi)

qσ(yi ∣xi)
,1)

= min(exp (θ′(h(y) − h(x)))
m
∏
i=1

qσ(xi ∣yi)

qσ(yi ∣xi)
,1)
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