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(Sinclair, 1989; Smith, 1989; Weingast, 1992).

Measure Comparison
- Reputation: survey of legislative staffers (Hall, 1992). 7/17/2002 @ &

Panel models with Senator, session and bill major topic (from Congressional
Bills Project) fixed effects were estimated. Passage out of Senate sample sub-

- Connectedness (Fowler, 2006).
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@ setted to bills that passed committee.

- Weak ties (Cosponsorship) (Kirkland, 2011). < Liberal

Parameter Estimates for Effects of Influence Measures on:

A RelatiOnaI Framework Model Selection Passage Out of Committee and Passage in the Senate
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Move beyond an individual-centered conceptualization to a set of « Use inferred networks to predict cosponsorship timing. Sponsor Connectedness -
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= Use cross-validation with 10 splits for each congress.
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= Use discrete event history model estimated with rare events logit (King
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» Domain specific: legislators hold more sway in some areas. FEstimates of author dominance effect on bill passage out of committee using
Influence Network — 107th Senate mean (33.71) and median (-1.588) thresholds. Exact matching on 9 variables

» Directed: Influence relations may be reciprocal or one-sided. with a bias correction for author floor amendments passed was used!.
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» Failure Prone: may not outweigh preferences.
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Measuring Influence Relationships
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This study leverages temporal patterns in bill cosponsorship activity to infer
a latent influence network using NETINF (Gomez Rodriguez et al., 2010).

= Cosponsorship of a bill results from cascade of interpersonal influence.

= Look for consistent temporal patterns in bill cosponsorship activity:.

Sen

= Infer a latent influence network that maximizes the probability of observed
cascades.

Under this model, we treat each sequence of bill cosponosrships as arising from
an influence cascade. The model assumes that temporal distance in cascades
follows a power-law or exponential distribution:

Exponential Power Law
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