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Research Objectives

• State a rigorous definition of network compartmentalization.
• Develop a generative model for compartmentalized networks.
• Introduce an analytic measure of network compartmentalization.
• Apply to the measurement of political polarization in congress.

Definition

Let the degree to which a graph is characterized by separation
on group membership as a result of a preference for within group
edge formation be the compartmentalization of that graph.

Generative Model
A generative model for compartmentalized networks should capture a pref-
erence for in-group edge formation that is mediated by the relative number
of available in-group edges remaining. The equation below describes the
probability of selecting an in-group edge for a given network (G), group
memberships (M) and preference for in-group tie formation (ρ):

γ =
(DM − Din) ρ

(DM − Din) ρ + ((1− DM)− Dout) (1− ρ)
(1)

To generate a network using this probability, we simply repeat the process
until the desired number of edges is achieved:

for k ∈ K do
Sample Edge Within Community ∼ γ(T , ρ,M)
if Edge Within Community then

Sample S , R from Shared Community
else

Sample S , R from Different Community
end if

end for
This generative process has several desirable properties including respecting a
perfect preference for in (out) group edges so long as they exist and producing
a constant proportion of in-group edges when ρ = 0.5 (no preference for in
or out group edges).
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Figure: Plots of average simulated proportion of edges within community
versus graph density with varying ρ and max within community density.
All proportions averaged over 20,000 simulations.

Modularity
Modularity is the most used measure of the degree to which groups are dis-
connected given a particular network structure. However, it is not invariant
to the number of groups or network size.
Following Newman [1, 2], for a division of the graph into L distinct commu-
nities, define an L × L matrix e whose eij component is the proportion of
edges in the original graph that connect nodes in group i to those in group
j . The modularity of the graph is then defined to be:

Q =
∑
i

eii −
∑
ijk

eijeki = Tr e− ||e2|| (2)

The first term (Tr e) is the fraction of edges that lie within communities,
while ||e2|| is the expected proportion of edges that lie within communities
in a graph in which the nodes have the same degrees but edges are placed
at random without regard for the communities.

Compartmentalization
Due to the limitations posed by existing measures, I introduce a new measure
of graph compartmentalization Υ. To be a valid measure of the intuitive
definition of compartmentalization stated previously, Υ must satisfy three
properties:

1 Υ must be invariant in N and the number and relative size of
communities for a constant DM .

2 Υ must be bounded above and below to give a consistent measure of
compartmentalization or anti-compartmentalization.

3 Υ must only attain its global maximum (minimum) value when D = DM
(D = 1− DM) and ties are only present within (between) community.

Let A be the graph adjacency matrix (with ||A|| the sum over the adjacency
matrix). Then we can define F , the fraction of observed edges that occur
within-groups as follows:

F =
∑
i

∑
j Mi ,jAi ,j
||A|| (3)

For a given F and DM , we can then define a measure of the compartmental-
ization of a graph Υ as:

Υ = [F − DM]×



if F ≥ DM : [1−(D−DM)2]
1−DM

if F < DM : [1−(D−(1−DM))2]
DM

(4)

The first term, [F − DM ] bears a strong analogy to the measure of modularity
Q, as it is just the proportion of in-community edges minus the expected
proportion of in-community edges if G were generated from the generative
process described previously with ρ = 0.5, indicating no preference for within
group edge formation (see Figure 2, Panel b). Υ is increasing in F and
decreasing in D as we can see by taking partial derivatives of Υ with respect
to F and D:

∂Υ

∂F =



if F ≥ DM :
[
1−(D−DM)2

]
1−DM

if F < DM :
[
1−(D−(1−DM))2

]
DM

≥ 0 (5)

∂Υ

∂D =



if F ≥ DM : −2[(F +DM)(D+DM)]
1−DM

if F < DM : −2[F (1+D−DM)+DM(1+D)]
DM

≤ 0 (6)

This captures the intuition that more compartmentalized graphs have a
higher portion of within-group edges and that dense graphs are generally
less partitioned, respectively.

Figure: Compartmentalization coefficient Υ values across different maximal
within-group density – density combinations. Graphs were simulated from
generative process and proportions averaged over 20,000 simulations. The
level plots display compartmentalization coefficients recovered from graphs
generated with (a) : ρ = 0, (b) : ρ = 0.5, (c) : ρ = 0.9, (d) : ρ = 1.
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Polarization in Congress

Figure: Plot of political party modularity and compartmentalization in the
Senate co-bill-cosponsorship network (left scale) and difference in party
mean NOMINATE scores, used as a ground-truth measure of ideological
polarization (right scale) from the 96th term of Congress (1979-1980) to
the 108th term (2003-2004)
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Table: Permuted Regressions of Modularity and Compartmentalization on Polarization

Dependent variable:
Polarization Polarization p value

Modularity 2.455 0.0016
Compartmentalization 1.719 0.0002
Observations 13 13
Adjusted R2 0.6091 0.785
F Statistic 19.7∗∗∗ 44.82∗∗∗
Iterations 62549 668122

Figure: Plot of political party modularity and compartmentalization in the
Senate directed cosponsorship network.
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Figure: Plot of political party modularity and compartmentalization in the
Senate influence network.
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Table: Directed Cosponsorship
Q Υ P

Υ 0.714 1
P 0.152 0.359 1

Table: Influence
Q Υ P

Υ 0.764 1
P -0.055 0.103 1

Measure Null Distribution

Figure: Plot of Υ calculated for 99 million simulated networks with ρ = 0.5
across all D - DM combinations.The red density is for DM = 0.1, the orange
density is for DM = 0.9, and the blue is averaged across all DM . The 95%
confidence interval for the null distribution is [-0.4224,0.4224].
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Correlation coefficients for two measures
against party-mean nominate differences for
the 96th-108th Congresses in the Senate co-
bill-cosponsorship network.

Q Υ P
Q 1
Υ 0.956 1
P 0.801 0.896 1


