
Big Data Analytics and HPC

Matthew J. Denny

mzd5530@psu.edu – www.mjdenny.com – @MatthewJDenny

www.mjdenny.com/ICPSR Data Science 2015.html

July 28, 2015

http://mjdenny.com/ICPSR_Data_Science_2015.html

Overview

1. Overview of High Performance

Computing/Big Data Analytics in R.

2. Programming Choices.

3. Big Data Example.

4. Hardware.

High Performance Computing

I Make use of low overhead, high speed

programming languages (C, C++,

Fortran, Java, etc.)

I Parallelization

I Efficient implementation.

I Good scheduling.

Big Data Analytics

I Use memory efficient data structures and

programming languages.

I More RAM.

I Databases.

I Efficient inference procedures.

I Good scheduling.

How They Fit Together

High Performance

Computing

Hardware Constraints

I RAM = computer working memory –
determines size of datasets you can work on.

I CPU = processor, determines speed of
analysis and degree of parallelization.

Look At Your Activity Monitor!

2. Programming Choices

Efficient R Programming

I Loops are slow in R, but fast enough for

most things.

I Built-in functions are mostly written in

C – much faster!

I Subset data before processing when

possible.

I Avoid growing data structures.

Loops Are “Slow” in R

system.time({

vect <- c(1:10000000)

total <- 0

#check using a loop

for(i in 1:length(as.numeric(vect))){

total <- total + vect[i]

}

print(total)

})

[1] 5e+13

user system elapsed

7.641 0.062 7.701

And Dast in C

system.time({

vect <- c(1:10000000)

#use the builtin R function

total <- sum(as.numeric(vect))

print(total)

})

[1] 5e+13

user system elapsed

0.108 0.028 0.136

Summing Over A Sparse Dataset

#number of observations

numobs <- 100000000

#observations we want to check

vec <- rep(0,numobs)

#only select 100 to check

vec[sample(1:numobs,100)] <- 1

#combine data

data <- cbind(c(1:numobs),vec)

Conditional Checking

system.time({

total <- 0

for(i in 1:numobs){

if(data[i,2] == 1)

total <- total + data[i,1]

}

print(total)

})

[1] 5385484508

user system elapsed

199.917 0.289 200.350

Subsetting

system.time({

dat <- subset(data, data[,2] ==1)

total <- sum(dat[,1])

print(total)

})

[1] 5385484508

user system elapsed

5.474 1.497 8.245

2.a. Pre-Allocation

Adding To A Vector vs. Pre-Allocation

system.time({

vec <- NULL

for (i in 1:(10^5)) vec <- c(vec,i)

})

user system elapsed

18.495 7.401 25.935

system.time({

vec <- rep(NA,10^5)

for (i in 1:(10^5)) vec[i] <- i

})

user system elapsed

0.144 0.002 0.145

Pre-Allocated Vector – Bigger Example

system.time({

vec <- rep(NA,10^6)

for (i in 1:(10^6)) vec[i] <- i

})

user system elapsed

1.765 0.040 1.872

Adding To A Vector – Bigger Example

system.time({

vec <- NULL

for (i in 1:(10^6)) vec <- c(vec,i)

})

Timing stopped at: 924.922 120.322 1872.294

I didn’t feel like waiting...

Pre-Allocation

I Vectors in R can only hold about 2.1

Billion elements.

I Write to over-allocated vector then

subset.

I Speedup is exponential in the vector size

and number of additions.

2.b. Parallelization

Parallelization Using foreach

I Works best when we need to calculate

some complex statistic on each

row/column of dataset.

I Works just like a regular for() loop as

long as operations are independent.

I Good for bootstrapping.

Parallelization Using foreach

Packages:

require(doMC)

require(foreach)

Register number of cores

nCores <- 8

registerDoMC(nCores)

iterations

N <- 100

Run analysis in parallel

results <- foreach(i=1:N,.combine=rbind) %dopar% {

result <- function(i)

}

Parallelization Using A snowfall Cluster

I Can run across multiple machines.

I Can run totally different jobs on each

thread.

I Requires explicit management by

researcher.

Parallelization Using A snowfall Cluster

Package:

library(snowfall)

Register cores

numcpus <- 4

sfInit(parallel=TRUE, cpus=numcpus)

Check initialization

if(sfParallel()){

cat("Parallel on", sfCpus(), "nodes.\n")

}else{

cat("Sequential mode.\n")

}

Parallelization Using A snowfall Cluster

Export all packages

for (i in 1:length(.packages())){

eval(call("sfLibrary", (.packages()[i]),

character.only=TRUE))

}

Export a list of R data objects

sfExport("Object1","Object2","Object3")

Apply a function across the cluster

result <- sfClusterApplyLB(indexes,Function)

Stop the cluster

sfStop()

Parallelization Using mclapply()

I Will not work with Windows

machines.

I Simple parallelization.

I Works well with functions written in

Rcpp.

Parallelization Using mclapply()

Packages:

library(parallel)

Wrapper Function

run_on_cluster <- function(i){

temp <- your_function(i,some other stuff)

return(temp)

}

Run analysis

indexes <- 1:Iterations

Result <- mclapply(indexes,

run_on_cluster,

mc.cores = num_cpus)

2.c. Memory Efficient
Regression

High Memory Regression Using biglm()

I Memory efficient implementation of

glm()

I Can also read in data in chunks from

internet or a relational database.

I Will not take data in matrix form, only

data.frame

High Memory Regression Using biglm()

Data must be of data.frame type

data <- as.data.frame(data)

Use variable names in formula

str <- "V1 ~ V2 + V4"

Run model

model<- bigglm(as.formula(str),

data = full_data,

family=binomial(),

maxit = 20)

3. Big Data Example

Congressional Bill Text

1. 90,867 final versions of bills introduced in

the U.S. Congress form 1993-2012.

2. 293,697,605 tokens (370,445 unique).

3. 90 covariates for every bill.

4. Addition data on amendments,

cosponsorships, and floor speeches.

Lets Look at Some Bill Text

This Act may be cited as the ‘‘EPA Science Act of 2014’’.

.....

SEC. 2. SCIENCE ADVISORY BOARD.

(a) Independent Advice.--Section 8(a) of the Environmental

Research, Development, and Demonstration Authorization Act

of 1978 (42 U.S.C. 4365(a)) is amended by inserting

‘‘independently’’ after ‘‘Advisory Board which shall’’.

(b) Membership.--Section 8(b) of the Environmental Research,

Development, and Demonstration Authorization Act of 1978

(42 U.S.C. 4365(b)) is amended to read as follows:

‘‘(b)(1) The Board shall be composed of at least nine

members, one of whom shall be designated Chairman, and

shall meet at such times and places as may be designated

by the Chairman.

‘‘(2) Each member of the Board shall be qualified

by education, training, and experience to evaluate

scientific and technical

Taxonomy of Bill Text

Category Definition Example

Substantive
Language

Confers the intent of a piece
of legislation or a particular
provision.

{restrict abortion},
{reduce the deficit}

Topical
Language

Confers information about
the subject of the Bill.

{alternate academic
achievement standards}

Boilerplate
Gives direction about legal
interpretation or implemen-
tation.

{Notwithstanding any
other provision of this
paragraph...}

Domain
Stopwords

Gives no information about
intent, legal interpretation
or implementation.

{SECTION}, {(c) Title
III.–}, {(1) Part a.–}, {(A)
Subpart 1.–}, {to adopt}

Lets Look at N-Grams

Unit of Analysis Topical Text

Tokens

{Should}, {a}, {Federal}, {agency}, {seek}, {to},
{restrict}, {photography}, {of}, {its}, { in-
stallations}, {or}, {personnel}, {it}, {shall},
{obtain}, {a}, {court}, {order}, {that},
{outlines}, { the}, {national}, {security}, {or},
{other}, {reasons}, {for}, {the}, {restriction}

Bigrams

{Should a}, {a Federal}, {Federal agency},
{agency seek}, {seek to}, {to restrict}, {restrict
photography}, {photography of}, {of its}, {its
installations}, {installations or}, {or personnel},
{personnel it}, {it shall}, {shall obtain}, {obtain
a}, {a court}, {court order}, {order that},
{that outlines}, {outlines the}, {the national},
{national security}, {security or}, {or other},
{other reasons}, {reasons for}, {for the}, {the re-
striction}

Syntactic Filtering

Tag Pattern Example

AN linear function
NN regression coefficients
AAN Gaussian random variable
ANN cumulative distribution function
NAN mean squared error
NNN class probability function
NPN degrees of freedom

Verbs capture actions...

Tag Pattern Example

VN reduce funding
VAN encourage dissenting members
VNN restrict federal agencies

Syntactic Filtering and Phrase Extraction

Unit of Analysis Matches

Filtered Bigrams
{Federal agency}, {restrict photography},
{court order}, {national security}, {other
reasons}

Filtered Trigrams NONE

Noun Phrases
{Federal agency}, {court order}, {national
security},{other reasons},{other reasons for
the restriction}

Constructing a Document-Term Matrix

I Want Document x Vocabulary matrix.

I Take advantage of sparsity.

I Use C++ for indexing.

I Have to chunk and add.

Constructing A Document-Term Matrix

gives us simple triplet matrix class

library(slam)

load in C++ function to generate rows in matrix

Rcpp::sourceCpp(’Document_Word_Compiler.cpp’)

for(i in 1:chunks){

dwm <- Generate_Document_Word_Matrix(chunk,..)

dwm <- as.simple_triplet_matrix(dwm)

if(j == 1){

swm <- dwn

}else{

swm <- rbind(swm,dwm)

}

}

Semi-Supervised Major Topic Tags

Category

1. Macroeconomics
2. Civil Rights, Minority Issues, and Civil Liberties
3. Health
4. Agriculture
5. Labor and Employment
6. Education
7. Environment
8. Energy
9. Immigration
10. Transportation
12. Law, Crime, and Family Issues
13. Social Welfare
14. Community Development and Housing Issues
15. Banking, Finance, and Domestic Commerce
16. Defense
.....

Filtered Trigrams for Identifying Topical
Area

Health
Word PMI Local Global
stay 1.754 24425 26428
start 1.689 12395 14321
enhance 1.684 22142 25707
providers 1.684 51656 59976
mining 1.679 15221 17751

Filtered Trigram PMI Local Global

health insurance plan 1.340 868 1528

health benefit plan 1.306 1125 2049

term care insurance 1.292 3564 6577

health plan means 1.110 261 578

alternative dispute
resolution

1.079 923 2108

Big Data Challenges

1. Extending R vectors/matrices beyond

2.1 billion elements.

2. More low level data structures – linked

list, queue, stack, etc.

3. Better garbage collection.

4. More lazy/greedy/approximate methods.

4. Hardware

Classes of Hardware

1. Supercomputers

2. Mainframes

3. Cluster Computing Resources

4. Servers

5. HPC Workstations

6. Consumer Desktops

7. GPGPU

Supercomputers

I Used when all computing resources are

needed to solve one problem.
I Physics, engineering, materials science

Mainframes

I Used for large database applications.

I Business analytics, healthcare.

Cluster Computing Resources

I Flexible, used for parallel and high

memory tasks.

I General purpose academic computing

infrastructure.

Servers

I Most often used for hosting websites.

I Can be useful for long jobs, high

memory.

HPC Workstations

I Personal mid-size high memory and

parallel computing.

I For people who moderate resources

constantly.

Desktop

I Everything, depending on how long you

are willing to wait.
I Will run 95% of what you want to do.

General Purpose GPU Computing

I Problems that break down to small,

interdependent parts.
I Bootstrapping, complex looping,

optimization.

Pricing Tiers

I Cluster Access : Usually free through

your institution but often requires

application/faculty sponsorship.

I HPC Workstation: $8,000-$15,000 –

Not a good investment for most.

I Desktop: $700-$2000 – Often a very

good investment.

My Suggestion

I Ask a faculty member for access. TRY

THIS FIRST.

I Investing in a desktop with 4C/8T (Intel

i7) and 16GB+ of RAM is often a smart

idea if it will not get in the way of

conference attendance.

I Access a university cluster only once you

are confident a desktop can no longer

meet your needs.

Upgrades

I Old computers are good for HPC tasks

that simply take a while to run.

I Locate computer in academic office for

free electricity/internet/easier remote

access.

I Relatively cheap upgrades can

dramatically improve performance.

I BENCHMARK

Know Your Motherboard

I How many RAM Slots?

I Peripherals, CPU, GPU slots.

RAM

I Work with larger datasets.

I 16GB Kits – ($100-150)

I 32GB Kits – ($200-300)

Solid State Hard Drive

I General system performance, data I/O.

I $0.40-$0.80 per GB

I Leave 15-20% free.

Check Review Sites

Things To Remember

I Get an Uninterrupted Power Supply

(UPS) for stable power.

I Put a sign on your computer that says

don’t touch.

Summary

I Don’t buy it unless you absolutely

need it.

I Most resources can be borrowed/had for

free.

I More powerful resources require more

time to learn.

