Relational Theory and Models for Financial Networks

Matthew Denny

Coauthors:
James D. Wilson, Shankar Bhamidi, Skyler Cranmer, Bruce Desmarais

1 University of Massachusetts Amherst
2 University of North Carolina at Chapel Hill
3 The Ohio State University

12/13/2014

This work was partially supported by US National Science Foundation Grant SES-1357606 (to B.D.) and by US National Science Foundation Grant CISE-1320219 (to B.D.).
The Relational Structure of Finance

- **Contagion** – Who will be affected by the collapse of a bank or a major loan default?

- **Systemic Risk** – Some structures are more prone to contagion.

- **Market Power** – Some firms occupy a *privileged* position.

- **Politics** – Co-Ownership.

- **Financialization** – Deeper connectivity?
More Than the Sum of its Parts

Efficiency

Fault Tolerance
Plan for the Talk

- Relational Theory for Financial Networks
- Statistical Models for Network Structure and Dynamics
- Applications to Financial Networks
- Data Challenges and Future Directions
The Network

Nodes and Edges
Transitivity and Reciprocity

Transitivity – Clustering

Reciprocity – Collaboration, Stability
Preferential Attachment

Popularity – Power, Path Dependence

Sociality – Economies of Scale
Data Format – Sociomatrix

<table>
<thead>
<tr>
<th>Manager</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101000100010001000000</td>
</tr>
<tr>
<td>2</td>
<td>100000000000000001001</td>
</tr>
<tr>
<td>3</td>
<td>000000000000010000100</td>
</tr>
<tr>
<td>4</td>
<td>110000100010001100000</td>
</tr>
<tr>
<td>5</td>
<td>0100000101001001010101</td>
</tr>
<tr>
<td>6</td>
<td>0100001010010001000100</td>
</tr>
<tr>
<td>7</td>
<td>0000000000000000000000</td>
</tr>
<tr>
<td>8</td>
<td>0001000000000000000000</td>
</tr>
<tr>
<td>9</td>
<td>0000000000000000000000</td>
</tr>
<tr>
<td>10</td>
<td>0010100110010001000100</td>
</tr>
<tr>
<td>11</td>
<td>111110011001101011100</td>
</tr>
<tr>
<td>12</td>
<td>100100000000000010001</td>
</tr>
<tr>
<td>13</td>
<td>0000100000100000000000</td>
</tr>
<tr>
<td>14</td>
<td>0000000100000001000000</td>
</tr>
<tr>
<td>15</td>
<td>10101100101001000000100</td>
</tr>
<tr>
<td>16</td>
<td>110000000000000000000</td>
</tr>
<tr>
<td>17</td>
<td>11111111111111101110011</td>
</tr>
<tr>
<td>18</td>
<td>0100000000000000000000</td>
</tr>
<tr>
<td>19</td>
<td>11101000001101100000100</td>
</tr>
<tr>
<td>20</td>
<td>0000000000010000001000</td>
</tr>
<tr>
<td>21</td>
<td>0100000000010000110000</td>
</tr>
</tbody>
</table>

Sender
Statistical Models for Network Structure and Dynamics
The Exponential Random Graph Model

- Let Y be a n-vertex network
- An ERGM is specified as:

$$P(Y, \theta) = \frac{\exp\{\theta' h(Y)\}}{\sum_{\text{all } Y^* \in Y} \exp\{\theta' h(Y^*)\}}$$

- θ is a parameter vector
- $h(Y)$ is a vector of statistics on the network
- Object of inference: the probability of Y among all possible permutations of Y given the network statistics.
- Only defined for binary networks.
The Generalized ERGM

- Transform unbounded continuous edges onto the [0,1] interval.

- λ_{ij} parameterizes the transformation to capture marginal features of Y_{ij}

- We write the GERGM PDF of Y as

$$f_Y(Y, \theta, \Lambda) = \frac{\exp[\theta'h(G(Y, \Lambda))]}{\int_{[0,1]^m} \exp[\theta'h(Z)] \, dZ} \prod_{ij} g(Y_{ij}, \lambda_{ij})$$
Estimation

- Start with MPLE parameter estimates.
- Use Metropolis-Hastings or Gibbs sampling to update parameters.
 1. Simulate networks using current parameters.
 2. Optimize over parameters.
- When parameters converge, stop algorithm.
- Check for degeneracy and model fit.
Model Degeneracy

![Graph showing edge density vs \(\theta_2 \) with different values of \(\alpha \). The graph illustrates the relationship between edge density and \(\theta_2 \) for various \(\alpha \) values, with distinct lines for each value, indicating the model degeneracy.](image-url)
Assessing Model Convergence

2.3 Goodness of fit

As in section 1, we assess the goodness of fit as follows.

R> gof2 <- gof(model2, nsim = 25)
R> plot(gof2)
Applications to Financial Network Data
Beyond “Gravity” in International Trade

- Yearly data on international trade flows from the UN Commodity Trade Statistics Database (1980-2001)

- Use of ERGM (thresholding data) and GERGM leads to substantively different results.
GERGM Results

Sociality – (Exporters)

Popularity – (Importers)

Reciprocity

Transitivity
Structure of International Lending

- Authors suggest this network is highly hierarchical. Our analysis draws this into question.
International Lending Network – 2005

Raw

Logged
Edge Transformation For Heavy-Tailed Financial Data

Raw Edgeweights -- Median: 553.307
Number of zero edges (omitted): 595

Transformed Edgeweights -- Median: 0.502
Number of zero edges (omitted): 619

Log data and normalize by maximum.
Observed 2005 Network vs. Random Network

- out2stars
- in2stars
- ctriads
- recip
- ttriads
- edgeweight

Box plots showing the distribution of network metrics for observed and random networks.
Model Specification – 2005 BIS Data

- Net \sim Popularity + Sociality + Transitivity

- Hypotheses
 - Popularity (+) a few major borrowers.
 - Sociality (?) a few major lenders?
 - Transitivity (+) financial clustering.

- Because data are normalized ($\mu \approx 0.5$), do not need intercept.
Preliminary Results

Significant Transitivity, Anti-Popularity

![Box plots showing distribution of network metrics](image)
Data Challenges and Future Directions
Data Challenges

- **Dealogic LoanAnalytics**: $12,000/yr – all syndicated loans since 1980.

- **BVD Bank Scope**: $25,000/yr – Ballance sheet data back to 2000.

- **FedWire** – Need government collaborator, 100M+ large inter-bank transfers.

- **Tri-Party Repo** – NY Fed has the data, need to get access.
Future Directions

- **More Theory**: Unique features of financial networks?

- **R Package**: GERGM estimation implementation in `xergm` package

- **Applications** – systemic risk, 2008 financial crisis.