Big Data Analytics in R

Matthew J. Denny
University of Massachusetts Amherst

mdenny@polsci.umass.edu
March 31, 2015

Wwww.mjdenny.com

INSTITUTE FOR

(7 *i SOCIAL SCIENCE
{‘9 RESEARCH UMaSSAm}lerSt

UNIVERSITY OF MASSACHUSETTS AMHERST

Overview

1. Overview of High Performance
Computing/Big Data Analytics in R.

2. Programming Choices

3. Paralellization/Memory Management
Example

4. C++ Example.

5. Big Data Example.

High Performance Computing

» Make use of low overhead, high speed
programming languages (C, C++,
Fortran, Java, etc.)

» Parallelization
» Efficient implementation.

» Good scheduling.

Big Data Analytics

» Use memory efficient data structures and
programming languages.

» More RAM.
» Databases.
» Efficient inference procedures.

» Good scheduling.

How they fit together

High Performance
Computing

Big Data

Hardware constraints

» RAM = computer working memory —
determines size of datasets you can work on.

» CPU = processor, determines speed of
analysis and degree of parallelization.

Xeon' E5-26XX v2
.

Look at your activity monitor!

B System Monitor

Monitor Edit View Help
System | Processes ||Resources | File Systems

CPU History
2009 -rrrriee

[cpul 20.0% I cPu2 21.1% %cpua 1.0% [cPua 0.0%
[cPus 0.0% CPU6 1.0% CPU7 0.0% [cpus 0.0% H
CPU9 0.0% I cpPulo 0.0% I cPull 0.0% [cPuiz 0.0%
[cPu13 0.0% B cPul4 0.0% [cpuls 0.0% [cPul6 0.0% -
Memory and Swap History
100 %
0%
0% T d
60 seconds. 50 a0 30 0 10 o
Memory Swap
3.7 GiB (1.5 %) of 252.2 GiB 0 bytes (0.0 %) of 32.0 GiB
Network History
e —
250.0 Kl -
0.0 Kil/s.
60 seconds 50 a0 30

Receiving 11.0 Kifs Sending 127.1 KiBfs
Total Received 4.1GiB Total Sent 4.3 GiB

2. Programming Choices

Efficient R programming

» Loops are slow in R, but fast enough for
most things.

» Built-in functions are mostly written in
C — much faster!

» Subset data before processing when
possible.

» Avoid growing datastructures

Loops are “slow” in R

system. time ({
vect <- c¢(1:10000000)
total <- 0
#check using a loop
for(i in 1:length(as.numeric(vect))){
total <- total + vectl[i]

}
print(total)
1)
[1] 5e+13

user system elapsed
7.641 0.062 7.701

And fast in C

system. time ({
vect <- c¢(1:10000000)
#use the builtin R function
total <- sum(as.numeric(vect))
print (total)
1)
[1] 5e+13
user system elapsed
0.108 0.028 0.136

Summing over a sparse dataset

#number of observations
numobs <= 100000000

#observations we want to check
vec <- rep(0,numobs)

#only select 100 to check
vec [sample(1:numobs,100)] <- 1

#combine data
data <- cbind(c(1:numobs),vec)

Conditional checking

system. time ({
total <- 0
for(i in 1:numobs){
if(datal[i,2] == 1)
total <- total + datali,1]
}
print(total)
1)
[1] 5385484508
user system elapsed
199.917 0.289 200.350

Subsetting

system. time ({
dat <- subset(data, datal,2] ==1)
total <- sum(datl[,1])
print(total)
1)
[1] 5385484508
user system elapsed
5.474 1.497 8.245

2.a. Pre-Allocation

Adding to a vector vs. pre-allocation

system. time ({
vec <- NULL
for (i in 1:(10°5)) vec <- c(vec,i)
1)
user system elapsed
18.495 7.401 25.935
system. time ({
vec <- rep(NA,1075)
for (i in 1:(1075)) vec[i] <- i
1)
user system elapsed
0.144 0.002 0.145

Pre-allocated vector — bigger example

system. time ({

vec <- rep(NA,1076)

for (i in 1:(1076)) vec[i] <- i
1)

user system elapsed

1.765 0.040 1.872

Adding to a vector — bigger example

system. time ({
vec <- NULL
for (1 in 1:(107°6)) vec <- c(vec,1i)

1)

Timing stopped at: 924.922 120.322 1872.294
I didn’t feel like waiting...

Pre-Allocation

» Vectors in R can only hold about 2.1
Billion elements.

» Write to over-allocated vector then
subset.

» Speedup is exponential in the vector size
and number of additions.

2.b. Parallelization

Parallelization using foreach

» Works best when we need to calculate
some complex statistic on each
row /column of dataset.

» Works just like a regular for () loop as
long as operations are independent.

» Good for bootstrapping.

Parallelization using foreach

Packages:
require (doMC)
require(foreach)

Register number of cores
nCores <- 8
registerDoMC(nCores)

iterations
N <- 100

Run analysis in parallel
results <- foreach(i=1:N,.combine=rbind) J%dopar’, {
result <- function(i)

¥

Parallelization using a snowfall cluster

» Can run across multiple machines.

» Can run totally different jobs on each
thread.

» Requires explicit management by
researcher.

Parallelization using a snowfall cluster

Package:
library(snowfall)

Register cores
numcpus <- 4
sfInit(parallel=TRUE, cpus=numcpus)

Check initialization
if (sfParallel()){

cat("Parallel on", sfCpus(), "nodes.\n")
elsed{

cat("Sequential mode.\n")

3

Parallelization using a snowfall cluster

Export all packages

for (i in 1:length(.packages())){
eval(call("sfLibrary", (.packages()[i]),
character.only=TRUE))

Export a list of R data objects
sfExport ("Objectl","Object2","0Object3")

Apply a function across the cluster
result <- sfClusterApplyLB(indexes,Function)

Stop the cluster
sfStop()

Parallelization using mclapply()

» Will not work with Windows
machines.

» Simple parallelization.

» Works well with functions written in
Repp.

Parallelization using mclapply()

Packages:
library(parallel)

Wrapper Function

run_on_cluster <- function(i){
temp <- your_function(i,some other stuff)
return(temp)

Run analysis

indexes <- l:Iterations

Result <- mclapply(indexes,
run_on_cluster,
mc.cores = num_cpus)

2.c. Memory Efficient
Regression

High memory regression using biglm()

» Memory efficient implementation of
glm()

» Can also read in data in chunks from
internet or from elational database.

» Will not take data in matrix form, only
data.frame

High memory regression using biglm()

Data must be of data.frame type
data <- as.data.frame(data)

Use variable names in formula
str <- "V1 ~ V2 + v4"

Run model

model<- bigglm(as.formula(str),
data = full_data,
family=binomial(),
maxit = 20)

3.
Paralellization /Memory
Management Example

Latent Network Inference Example

» Want to measure the influence of
legislators on each other.

» Use temporal patterns in bill
cosponsorship as evidence.

» Gomez Rodriguez, M., Leskovec, J., &
Krause, A. (2010). "Inferring networks of
diffusion and influence”. KDD

Inferring influecne

Bill Cosponsorship Delay Temporal Cascades
® @ |

@ I ‘ I @i_@)i"@l —+

@ @ T:.me —> G @ %
:QJ@ @ — — @’ 14
l Time —p @ 1
° 02000 d¢]

Measuring influence in the Senate

utchinson

®
Grassley

g

How many ties do I use?

Edge Gain For NETINF Algorithm

14000
!
[¢]

4000 8000

Algorithm Marginal Gain

0
!

T T T T T
0 1000 2000 3000 4000 5000

Additional Inlfuence Tie Number

Strategy

» Predict when Senators will cosponsor in
held-out sample.

» Fit event history models for model
selection.

» Optimization over # edges and
hyper-parameter (10 80/20 splits)

» Grid Search!

Cross validation

» Jensen, D. D., & Cohen, P. R. (2000). Multiple
Comparisons in Induction Algorithms. Machine
Learning, 309338.

10-fold cross-validation
| Total data |

‘ ‘ | | ‘ | ‘ | | ‘ | I:I TRmmg
|
‘ ‘ | | ‘ | ‘ | | ‘ | Testdate
v

Rare Events Logistic Regression

» King, G., & Zeng, L. (2001). Logistic regression in
rare events data. Political Analysis, 9(2), 137163.

Ba@ B
Li‘l\ e

47

D (5
Qe

§ Vo4
i Al

X Uidp:.
Nyt
v N

Use model log likelihood for selection.

average model log likelihood

T T T
0 500 1000 1500 2000
Number of Edges

4. C++ Example

Rcpp and RcppArmadillo

1. Repp is integrated with RStudio — easy
C++ coding

2. ReppArmadillo — gives you access to
linear algebra libraries.

3. Shallow vs. deep data structures.

4. Best for sampling and looping,.

Basic RcppArmadillo C++4 function

#include <RcppArmadillo.h>
#include <string>
// [[Rcpp: :depends (RcppArmadillo)]]
using namespace Rcpp;
//[[Rcpp: :export]]
List My_Function(

int some_number,

List some_vectors,

arma::vec a_vector,

arma::mat example_matrix

AL

List to_return(l);
to_return[0] = some_data;
return to_return;

Looping + Conditionals (ex. word counter)

for(int n = 0; n < number_of_bills; ++n){
report(n);
int length = Bill_Lengths[n];
std: :vector<std::string> current = Bill_Words[n];
for(int i = 0; i < length; ++i){
int already = 0;
int counter = 0;
while(already == 0){

if (unique_words [counter] == current[i]){
unique_word_counts[counter] += 1;
already = 1;

}

counter +=1;
}
}
}

Drawing Random Numbers

// add to second and third lines of file
#include <random>
#include <math.h>

// set RNG and seed
std::mt19937_64 generator(seed);

// define a uniform distribution and draw from it
std::uniform_real_distribution<double> udist(0.0, 1.0)
double rand_num = udist(generator);

// define a normal distribution and draw from it
std: :normal_distribution<double> ndist(mu,sigsq);
my_matrix(k,b) = ndist(generator);

Other Useful Stuff

In R define
Report <- function(string){print(string)}

// In C++ we write (inside function definition)
Function report("Report");

// now we can print stuff back up to R
report(n);

// initialize a vector/matrix to zeros
arma::vec myvec = arma::zeros(len);

// some math operators
double d = exp(log(pow(2,4)));

Things to watch out for

1. Use Armadillo data structures — Repp
data structures can overflow memory:.

2. Cast integers as doubles before dividing,.

3. Low latency + faster looping =
50-2,000x speedup.
4. For Linux systems:

PKG_CPPFLAGS = "-std=c++11"
Sys.setenv(PKG_CPPFLAGS = PKG_CPPFLAGS)

5. Big Data Example

Congressional Bill Text

1. 90,867 final versions of bills introduced in
the U.S. Congress form 1993-2012.

2. 293,697,605 tokens (370,445 unique).
3. 90 covariates for every bill.

4. Addition data on amendments,
cosponsorships, and floor speeches.

Lets Look at Some Bill Text

This Act may be cited as the ‘‘EPA Science Act of 2014’’.

SEC. 2. SCIENCE ADVISORY BOARD.

(a) Independent Advice.--Section 8(a) of the Environmental
Research, Development, and Demonstration Authorization Act
of 1978 (42 U.S.C. 4365(a)) is amended by inserting
‘‘independently’’ after ‘‘Advisory Board which shall’’.
(b) Membership.--Section 8(b) of the Environmental Research,
Development, and Demonstration Authorization Act of 1978
(42 U.S.C. 4365(b)) is amended to read as follows:
€“(b) (1) The Board shall be composed of at least nine
members, one of whom shall be designated Chairman, and
shall meet at such times and places as may be designated
by the Chairman.
¢¢(2) Each member of the Board shall be qualified
by education, training, and experience to evaluate
scientific and technical

Taxonomy of Bill Text

Category Definition Example

Substantive Confe.rs t}}e intent of a blece {restrict abortion},
of legislation or a particular .

Language g {reduce the deficit}
provision.

Topical Confers information about {alternate acadermic

Language the subject of the Bill. achievement standards}
Gives direction about legal {Notwithstanding any

Boilerplate interpretation or implemen- other provision of this
tation. paragraph...}

Domain Gives no information about {SECTION}, {(c) Title

Stopwords intent, legal interpretation IIT.-}, {(1) Part a—}, {(A)

or implementation.

Subpart 1.-}, {to adopt}

Lets Look at N-Grams

Unit of Analysis

Topical Text

Tokens

Bigrams

{Should}, {a}, {Federal}, {agency}, {seek}, {to},
{restrict}, {photography}, {of}, {its}, { in-
stallations}, {or}, {personnel}, {it}, {shall},
{obtain}, {a}, {court}, {order}, {that},
{outlines}, { the}, {national}, {security}, {or},
{other}, {reasons}, {for}, {the}, {restriction}

{Should a}, {a Federal}, {Federal agency},
{agency seek}, {seek to}, {to restrict}, {restrict
photography}, {photography of}, {of its}, {its
installations}, {installations or}, {or personnel},
{personnel it}, {it shall}, {shall obtain}, {obtain
a}, {a court}, {court order}, {order that},
{that outlines}, {outlines the}, {the national},
{national security}, {security or}, {or other},
{other reasons}, {reasons for}, {for the}, {the re-
striction}

Justeson and Katz Filtering

Tag Pattern

Example

AN

NN

AAN
ANN
NAN
NNN
NPN

linear function

regression coefficients

Gaussian random variable
cumulative distribution function
mean squared error

class probability function
degrees of freedom

Add in verbs to capture intent...

Tag Pattern

Example

VN
VAN
VNN

reduce funding
encourage dissenting members
restrict federal agencies

J&K Filtering and Phrase Extraction

Unit of Analysis

Topical Text — Verb Phrase Additions

J&K Filtered Bi-
grams

J&K Filtered
Trigrams

Noun Phrases

{Federal agency}, {restrict photography},
{court order}, {national security}, {other rea-
sons}

NONE

{Federal agency}, {court order}, {national se-
curity},{other reasons},{other reasons for the
restriction}

Constructing a Document-Term Matrix

» Want Document x Vocabulary matrix.
» Take advantage of sparsity.
» Use C++ for indexing.

» Have to chunk and add.

Constructing a Document-Term Matrix

gives us simple triplet matrix class
library(slam)

load in C++ function to generate rows in matrix
Rcpp: :sourceCpp(’Document_Word_Compiler.cpp’)

for(i in 1:chunks){
dwm <- Generate_Document_Word_Matrix(chunk,..)
dwm <- as.simple_triplet_matrix(dwm)

if(§ == 1)1

swm <- dwn
Yelsed{

swm <- rbind(swm,dwm)
}

¥

Semi-Supervised Major Topic Tags

Category

Macroeconomics

Civil Rights, Minority Issues, and Civil Liberties
Health

Agriculture

Labor and Employment

Education

Environment

Energy

9. Immigration

10. Transportation

12. Law, Crime, and Family Issues

13. Social Welfare

14. Community Development and Housing Issues
15. Banking, Finance, and Domestic Commerce
16. Defense

PN O W=

J&K Filtered Trigrams for Identifying
Topical Area

Health
Word PMI Local Global
stay 1.754 24425 26428
start 1.689 12395 14321
enhance 1.684 22142 25707
providers 1.684 51656 59976
mining 1.679 15221 17751
Filtered Trigram PMI Local Global
health insurance plan 1.340 868 1528
health benefit plan 1.306 1125 2049
term care insurance 1.292 3564 6577
health plan means 1.110 261 578
alternative dispute 1.079 923 2108

resolution

Unit of Analysis? — Keystone XL Pipeline
Approval Act

34 Lines

489 Lines

Q>

Down the Road

1. Average conditional mutual information
vocabulary partitioning.

2. Political branding and meme-detection.

3. Text/Networks

4. More super secret tech :)

Big Data Challenges

1. Extending R vectors/matricies beyond
2.1 billion elements.

2. More low level datastructures — linked
list, queue, stack, etc.

3. Better garbage collection.

4. More lazy/greedy /approximate methods.

